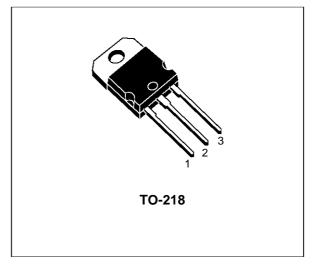
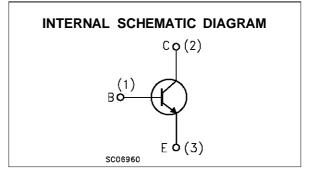


BUH1215

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- SGS-THOMSON PREFERRED SALESTYPE
- HIGH VOLTAGE CAPABILITY
- VERY HIGH SWITCHING SPEED


APPLICATIONS:


HORIZONTAL DEFLECTION FOR COLOUR TV AND MONITORS

DESCRIPTION

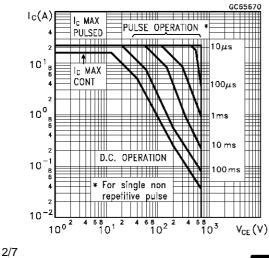
The BUH1215 is manufactured using Multiepitaxial Mesa technology for cost-effective high performance and uses a Hollow Emitter structure to enhance switching speeds.

The BUH series is designed for use in horizontal deflection circuits in televisions and monitors.

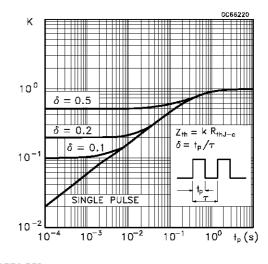
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage $(I_E = 0)$	1500	V
V _{CEO}	Collector-Emitter Voltage $(I_B = 0)$	700	V
V _{EBO}	Emitter-Base Voltage ($I_{C} = 0$)	10	V
Ι _C	Collector Current	16	A
Ісм	Collector Peak Current (tp < 5 ms)	22	A
IB	Base Current	9	A
I _{BM}	Base Peak Current (t _p < 5 ms)	12	A
Ptot	Total Dissipation at T _c = 25 °C	200	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

June 1996

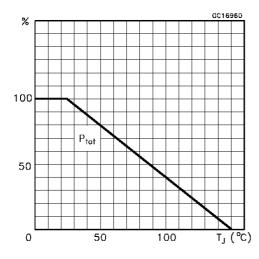

THERMAL DATA

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \,^{\circ}C$ unless otherwise specified)

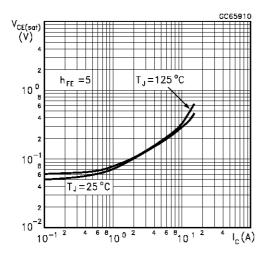

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
I _{CES}	Collector Cut-off Current ($V_{BE} = 0$)	$V_{CE} = 1500 V$ $V_{CE} = 1500 V$ $T_j = 125 °C$			1 2	mA mA	
I _{EBO}	Emitter Cut-off Current $(I_c = 0)$	V _{EB} = 5 V			100	μA	
$V_{CEO(sus)}$	Collector-Emitter Sustaining Voltage	I _C = 100 mA	700			V	
V_{EBO}	Emitter-Base Voltage (I _C = 0)	I _E = 10 mA	10			V	
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$I_{\rm C} = 12 \text{ A}$ $I_{\rm B} = 2.4 \text{ A}$			1.5	V	
V _{BE(sat)} *	Base-Emitter Saturation Voltage	$I_{\rm C} = 12 \text{ A}$ $I_{\rm B} = 2.4 \text{ A}$			1.5	V	
h _{FE} *	DC Current Gain	$ I_C = 12 \ A V_{CE} = 5 \ V \\ I_C = 12 \ A V_{CE} = 5 \ V T_j = 100 \ ^oC $	7 5	10	14		
t _s t _f	RESISTIVE LOAD Storage Time Fall Time	$V_{CC} = 400 V$ $I_C = 12 A$ $I_{B1} = 2 A$ $I_{B2} = -6 A$		1.5 110		μs ns	
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time			4 220		μs ns	
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$I_{C} = 6 A \qquad f = 64 \text{ KHz}$ $I_{B1} = 1 A$ $V_{beoff} = -2 V$ $V_{ceflyback} = 1100 \sin\left(\frac{\pi}{5} 10^{6}\right) t V$		3.5 180		μs ns	

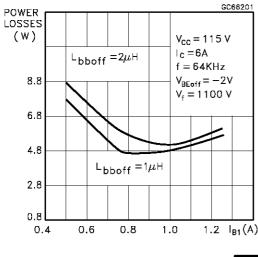
* Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

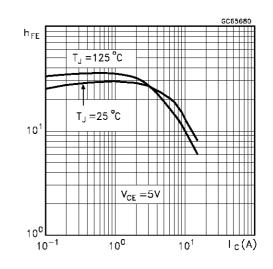
Safe Operating Area

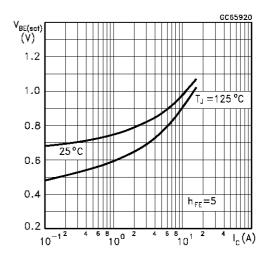


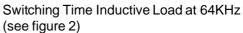
Thermal Impedance

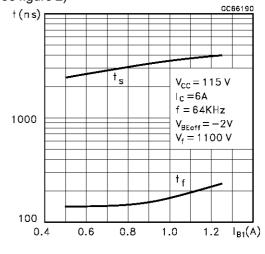



Derating Curve

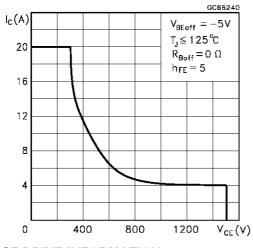

Collector Emitter Saturation Voltage


Power Losses at 64 KHz




DC Current Gain

Base Emitter Saturation Voltage



Reverse Biased SOA

BASE DRIVE INFORMATION

In order to saturate the power switch and reduce conduction losses, adequate direct base current I_{B1} has to be provided for the lowest gain h_{FE} at $T_j = 100$ °C (line scan phase). On the other hand, negative base current IB2 must be provided the transistor to turn off (retrace phase). Most of the dissipation, especially in the deflection application, occurs at switch-off so it is essential to determine the value of IB2 which minimizes power losses, fall time tf and, consequently, Ti. A new set of curves have been defined to give total power losses, ts and tf as a function of IB1 at 64 KHz scanning frequencies for choosing the

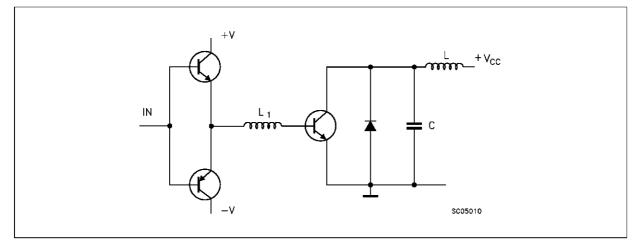
optimum drive. The test circuit is illustrated in figure 1.

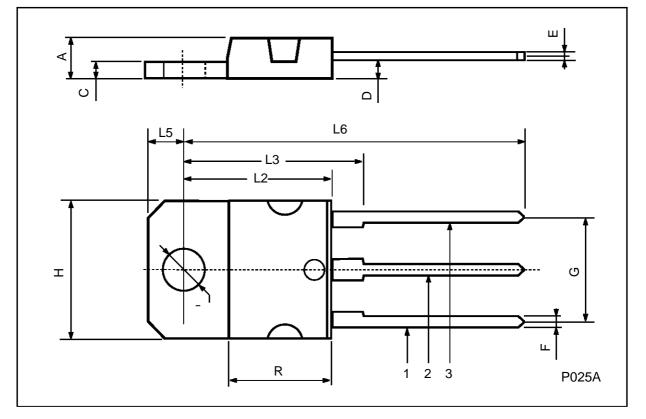
The values of L and C are calculated from the following equations:

$$\frac{1}{2}L(I_{C})^{2} = \frac{1}{2}C(V_{CEfly})^{2}$$
$$\omega = 2\pi f = \frac{1}{\sqrt{LC}}$$

Where I_C = operating collector current, V_{CEfly} = flyback voltage, f= frequency of oscillation during retrace.

Figure 1: Inductive Load Switching Test Circuits.




Figure 2: Switching Waveforms in a Deflection Circuit

DIM.	mm			inch			
2111.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.7		4.9	0.185		0.193	
С	1.17		1.37	0.046		0.054	
D		2.5			0.098		
E	0.5		0.78	0.019		0.030	
F	1.1		1.3	0.043		0.051	
G	10.8		11.1	0.425		0.437	
Н	14.7		15.2	0.578		0.598	
L2	-		16.2	-		0.637	
L3		18			0.708		
L5	3.95		4.15	0.155		0.163	
L6		31			1.220		
R	-		12.2	-		0.480	

SGS-THOMSON MICROELECTRONICS

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication superseds and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical comporents in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1996 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

